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One of the most important discoveries of analytical mechanics is the
optical-mechanical analogue revealed (discovered) by Hamilton.

Hamilton established the likeness of the canonical forms

dg _ 9H 4 _ _9H
dt T dp dt — T 9q

of the basic equations of the dynamics of conservative systems and of

the wave theory of light of Huygens.

Discoveries of Hamilton, Jacobi, Poincaré and Helmholtz are closely
connected with the optical-mechanical analogue. All this is well known.

Optical theory did not cease to develop after the wave theory of
Huygens. There followed the theories of Fresnel, Cauchy and Maxwell.

Cauchy, who set himself as a goal the further development of the
optical-mechanical analogue of Hamilton, found this analogy not in the
area of the dynamics of systems of material points, but in the field of
the theory of oscillations of an elastic medium. With his discovery,
Cauchy diverted from analytical dynamics problems concerning the further
development of the analogue with the post-Huygens theory of light.

Felix Klein was, probably, the first who directed his attention to
this matter. It is for this reason that we shall refer to the problem of
the further development of the optical-mechanical analogue within the
framework of analytical dynamics, as the problem of Klein.

In order to solve the problem of Klein, we note that in all post-
Huygens theories, light is considered as some oscillating process. The
development of the optical-mechanical analogue should, therefore, be
sought in the area of oscillatory motions.

The work was found in notes by N.G. Chetaev and was dated 1941.
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Lagrange established that near the position of equilibriuwm of some
mechanical systems there arise oscillations under small disturbances of
the initial values of the coordinates q and of the momenta p when the
position of equilibrium is stable. Conversely, if the position of equi-
librium is stable, then in its neighborhood, any disturbed motion will
have an oscillatory nature, and if they are of a destructive nature,
then this is due to secular terms. For the case of periodic motion, the
theorem of Lagrange was generalized by Poincaré and liapunov independ-
ently of each other. They showed that if a certain periodic motion of a
conservative system is stable, then the corresponding equations in
Poincaré’s variations will have solutions with zero characteristic
numbers of Liapunov. I have been able to generalize the theorem of Poin-
caré and Liapunov to the general case of stable motions of conservative
systems,

Thus, if the solution of Klein’s problem exists, then one should seek
it among the properties of stable motions of conservative systems.

1. On a property of stable motions of conservative systems.
For the sake of simplicity let us assume that we have a holonomic system
with one degree of freedom which is acted upon by a system of forces
which admit a force function; let ¢ be Lagrange’s coordinate, p its
momentum, and let H be Hamilton’s function. The equations of motion have
the form

dg _ 9H ap __ _%H
dt T ap’ dt aq

The equations in variations of Poincaré for some leading or undis-
turbed motion will be
dE _ H . , &H dn __#H, ®H
T pac T ®T T gt g !

where £, n denote the variations of the coordinate ¢ and of the momentum
p, respectively,

Let us assume that the leading motion is reducible and stable in the
sense of Liapunov. For small initial disturbances £,, 7, the equations
of Poincaré will always be equations of the first approximation. The
solutions of the equations in the variations of Poincaré will have the
form

E=ok + B M = 1k + 37y (1.1)

For two arbitrary solutions £, 3 and £, n° of the equations in the
variations, Poincaré established the now well known invariant

E'ql _— 'lﬁ’
In accordance with Poincaré’s invariant we have
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In other words, for every instant ¢, the transformations (1.1) repre-
sent a uni-modular group of linear transformations. If the leading
motion is stable and reducible, then, in accord with the basic results
of Liapunov’s theory of stability, the equations of variation of Poin-
caré possess an invariant quadratic form of a definite sign, and the in-
variant quadratic form will be of the type

&+ m
What are the interrelations which the invariance of this form imposes
on the coefficients of the uni-modular linear transformation (1.1)?

We have
6 + = (e + Bro) (2E; + 1) + (vbo + o) (7, + 30) =
= aakyf+ iy + Bamgy + BB + Yoo + 18E 70 + Syncky’ 4 33meme =
= (a& + 17) &y + (@B + 78) g + (B + 87) mfy + (B + 88) o = Koo + Mo”0

Since this relation must hold for arbitrary initial values fO' No»
the following equations have to be valid

fat+or=0,  pE+8=1
From the first colum of the obtained relations we obtain
- |1 7 - a 1
a=lo3]=s T=[g o=t
while from the second colum we have
=_]10 7 < a 0
B=14 s|=—7' 5=1lp 1|=°‘

Thus, the matrix of the uni-modular transformation (1.1) has the
following property
(005
T3 —B a

in case the leading motion is stable also in the reduced variables ¢, g.

2. Representation of the obtained group of transformations.
The revelation of an analogue between phenomena consists of showing the
coincidence of the group of transformations of one phenomenon with the
group of transformations of the other phenomenon. In case both groups
turn out to be the same, then there exists an analogue between the two
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phenomena.

The essence of the analogue discovered by Hamilton lies in the fact
that the group of transformations of the conservative systems, and the
group of the propagation of light by Huygens’ wave theory are groups of
contact or canonical transformations., That the group of transformations
of the dynamics of conservative systems is the group of tangent trans-
formations was established by Hamilton in the basic property of the
function of action V

8V = Y pdg— N p°8g°

This asserts that the values g, p, and ¢°, p° are comnected by the
formulas of the contact transformations

v o OV
p= aq* —pP = 9
Hence, in order to find phenomena which are analogous to the disturbed
motion of canonical systems in the neighborhood of a stable leading
motion, it is necessary to consider representations of the obtained group
of the uni-modular,linear transformations (1.1) with the property (1.2).

It has been shown quite clearly that the group of uni-modular linear
transformations (1.1) has a representation in the proper Lorentz group.
It is necessary to explain the nature of the property (1.2).

Let us consider the space £, n whose metric properties are determined
by Poincaré’s invariant
o —

We obtain the so-called spinor space with the skewsymmetric funda-
mental tensor

(gas) = (_1 0)

if we interpret the variations £, 5 as contravariant components of the
1 g2 . .

vector £, £%. The covariant components are determined by the usual

formulas

whence, El — Ez' Ez —_— El

If the transformations of the contravariant components happen to be
the transformations (1.1), then we will have the following formulas for
the covariant components £, £,:

&1 = 861 — &0z, £2 = — Bor + akos
From this it follows that the conjugate components ‘f.l' f—z will be
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transformed according to the formulas
L= 8Eol - '}éozy _52 = _—p-Eol + ;Eoz

If the leading motion is stable, that is if the relation (1.2) holds,
then one obtains directly the formulas for the transformation

_1 = “Eol + ﬁgoz. Ee = ‘TEM + 8Eoz

In other words, the components Z 1 52 are transformed, in accord with
the formulas (1.1) of the transformation of the contravariant components
of the vector of the spinor space.

Thus, if the property (1.2) holds for an arbitrary vector (£), one
may look upon the components &, £, as upon contravariant components 7!,
72 of some corresponding vector (7]3. We shall express this circumstance
analytically by following relations:

St =17, S =k (@=1, 2 (2.9)

Van der Waerden has made a thorough study of the representations of
the transformation S in his work *The method of group theory in quantum
mechanics*. He established that the transformation S augments with a re-
flection the representation of the uni-modular group of the linear trans-
formations (1.1) in the proper group of Lorentz.

For the sake of completeness, I shall give here the method of such a
representation. Let us consider the spin-tensor of the second order
||cW|| whose component c,; is tsansformed as the product fﬂfv. Such a
tensor has the following invariant

61 “1s
Co3 Cat

C:

i ne 1 12 . 293 AT .31 1 < ol
= €11€o5— C18ai = 3 (i€ €a5¢® - €151 - cpict) = 7 B v ch

Let us consider the tensor |lc,; |l for which the invariant quadratic
form

2 quE“E"

takes on only real values. Here c,;, c,; must be real, and c,s and cy;
are complex conjugates. If we now introduce in place of ¢ , new real
variables x,, x,, z,, z; in accordance with the relations

C1i = Zg + Zo, €13 = Z; + iz,

. . 2.2
Co1 = Xy — ITy, czéz—xs+xo ( )

then the invariant C will take the following form in terms of the new
variables:
zs + 7, zy + izg

C= . = 1 — ;% — 2, — x3?
Zy— iz, —x34+ 7, 0 1 2 3
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This shows that under the transformation (1.1) the real variables %,
will be transformed in such a way as to leave invariant the expression
xoz - 112 - 122 - xsz, i.e., the variables x;, will undergo a real, proper

Lorentz transformation.

Let us now apply the transformation S, given by formulas (2.1), to

the tensor ||c’w||
Slec..|= e
or, more explicitly el =Tew 1
Seri = ¢l = e, Seyp = ¢ = — ¢y
Seaj = ¢ = — ¢y’ Scas = 't = oy’

This, however, by formula (2.2) yields directly
xo’ = Xg, xl' = — X, 12' = — Xg, 13, = —Tg

Hence, the complete group of Lorentz transformations is a represent-
ation of the group of uni-modular linear transformation (1.1) with the
property (1.2).

The complete Lorentz group is basic for the theory of light of Cauchy
and Maxwell which appeared after Huygens’ theory. One can look upon the
obtained result as a solution of Klein’'s problem.

3. Another proof. It is reasonable to require another proof for
the basic result.

In the first proof the property (1.2) of the reduced variables was
used for stable disturbed motions. Let &', £2 represent general vari-
ations of the coordinate and the impulse. According to the Poincaré in-
variant the components {? are transformed as the group of uni-modular
linear transformations

8 =ak! + B 8= 1k’ + 8&° (ad —By=1) (3.1

Let the leading motion be stable, and the corresponding differential
equations in the variations of Poincaré be reducible. Then, according
to the results of Liapunov, there exists a definite (in the sense of
Liapunov) real, invariant quadratic form known as Liapunov’s function.
In the spinor space of the group of uni-modular linear transformations
(3.1) this function of Liapunov will be a quadratic form of the Hermite
type

2espP Gu=0y)

where | c,;| represents a bounded function of time. The criteria for the
definiteness of a Hermitian form are well known
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c c

12
Cos

C=|1 "85 0 (0 (3.2)

Cai
Indeed, suppose that
o =2 45 &°

is a transformation to the canonical reduced variables ¢® in terms of
which the equations of variations of Poincaré have constant coefficients.
In accordance with the definition of reduced systems (Liapunov, Obshchaia
zadacha [General problem ] page 43) the coefficients A 5% satisfy the
following conditions: they are continuous and bounded "functions of time
t; their first derivatives are functions of the same type, and the
quantity .

Il 4g

is a bounded function of t. From this it follows that the now obvious
Liapunov function of the canonical, reduced variables % has the form

dggn = 2 4u AHE

For the stable disturbed motions, determined by the canonical equa-
tions in variations, the function of Liapunov is an invariant (a pair of
pure imaginary characteristic roots). Hence,

[

are the components of a spin-tensor of the second order. The Hermitian
nature of the quadratic form can be proved directly from the relation

=BT = 3H Ai=i

The expressions Cyp are bounded, and the Cui

We have seen that the discriminant of the Hermitian form C is an in-
variant of the group of the uni-modular linear transformations (3.1).

The criterion for definiteness of (3.2) in the variables x, takes for
form

are positive,

2 — 22— 22— 122 >0

The rest follows easily. Let us consider, therefore, the invariant
Z? — P — 2 — 2t =1>0

In the space (Euclidean) Xy X %y %3, this equation determines a two-
sheeted hyperboloid. By geometrical considerations, like those that were
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developed by Poincaré in his work *On the basic hypotheses of geometry*,
one can represent a two-sheeted hyperboloid in a real three-dimensional
space of Lobachevskii. To a definite set of values of the variables x
there corresponds a point of the upper x, > 0 sheet of the two-sheeted
hyperboloid, and, hence, also a point of the real part of the space of
Lobachevskii. This representation can also be realized by the methods of
Cayley, Cartan and others.

The totality of the transformations of the real Lobachevskii space
represents, as is known, the complete Lorentz group, i.e. the basic group
of transformations of the mathematical theory of light of Cauchy and of
the electromagnetic theory of light of Maxwell. This proves that the
group of the uni-modular linear transformations (3.1) for the case of a
stable leading motion (if the equations in variation are reducible) has
as its representation the complete Lorentz group.

The set of all linear transformations of the variables x, in the real
Lobachevskii space consists of the motions of the space within itself
and of reflections. In other words, the group of uni-modular linear trans-
formations (3.1) which corresponds to the stable leading motion, has a
representation in the proper Lorentz group augmented by a reflection.
The group of proper Lorentz transformations with the transformation of
reflection represents the complete Lorentz group. The theorem has thus
been proved.

(Note. The presented proof makes it possible to drop the hypothesis
on the reducibility of the equations in variation of Poincaré if one re-
quires to begin with the existence of a "sign-definite" (in the sense of
Liapunov) invariant.

Z Cuy Eua‘v

The stability of the leading motion will then follow directly from
the existence of such an invariant on the basis of the general theorem
of Liapunov on the stability of motion (Obshchaia zadacha, [ General
problea ] p.61)).

4. Third Proof. One can give still a third proof without the use
of the results of spinor analysis and without drawing upon the geometry
of Lobachevskii.

Let us consider the equations in the variations of Poincaré for the
leading motion

¢ _OH .  FH dn_ _OH, OH

E?=apaq5 + ap? Kk dt~ ~ ap®

If the disturbed motion is stable and the equations in the variations
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are reducible in the sense of Liapunov, then the characteristic equation
of the reduced system will have a pair of pure imaginary roots. Hence,
the *sign-definite* Liapunov function V for the equations in the vari-
ations of Poincaré will be a real quadratic form whose total time deri-
vative will be zero.

Let Liapunov’s function be given by the Hermitian form
V=g g+ ‘Pﬁz -+ 4’2&"1 + %"I‘.’V_}
satisfying the criterion of sign-definiteness (¢, # 0) and

n
noh |>0 (4.1)

The first total derivative with respect to time of Liapunov’s func-
tion is identically zero. This yields

C =

&V .= 2H a*H \: OH ¢ | OH -

7 =P+ ‘Px(me‘*"ﬁn E+?1E(3P392+3_P’-n)+
e OH , | PH \- OHg OH -

+ 0+ 1 (5558 g )0+ ik (=g E— gy )+
i RH = 9H - s/ ®H, oH

+ 92+ e m;f+§?”)“+‘pge<"5?‘“mn)+

- otH *H  \- *Hy  H -
+q>z"'m+q>z(-~3,;,—2 —mn)n'i—m(*-;,;r& —Wn)EO

Comparing the coefficients of & f- , &1, Eq , 77 we obtain the follow-
ing system of linear differential equations

’ BSH aH ’ 3H H sH
P + zm%"——aa?@l 4+ =0, ¢’ + Frhe! + ""“'apaqq’l'— o0 2= 0

, a*H aH ’ *H H aH
# 2t it i) =0 Wt gra—gmbh— gy m=0

Indeed, if the right hand sides of these equations were not zero, then
it would be possible to select the initial values &, 7, so that dV/dt
would not venish at the initial moment (which can be chosen arbitrarily).
This, however, is not possible by hypothesis.

It is easily verified by direct computation that the expression

P1

€= Y2 @

= P12 — P1a

is an.integral. Indeed, according to the differential equations for the
functions ¢ ar ¥qr we have
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dC ’ ’ ’ ’
T = PP ¢’ — e — iy =
9 *H 2H NH
[—2 Ery rhclanle i (& - ‘Pz)] P2+ [2 apog P2 T a7 (% + ‘Pz)] Pr +
nH [9cH H a*H *H °H -
e+ gyt — e+ [0 — gt — G m =0

l

The rest of this proof continues as the preceding one.

5. Fourth Proef. It is possible to find the solution in closed
form for one of the primitive cases.

Let
2T = X ai; pipi, U=U(q,.--, q0)

where T and U are the kinetic energy and the force function for some
mechanical system with k degrees of freedom for which the q,, ..., g,
are the coordinates, while p,, ..., p, are the momenta.

Lec ¥(t, g,, ..., 9, @), «.., a;) be the complete Jacobi integral
of the equation
%+H=0
where H= T ~ U is the Hamiltonian; a;j does not depend explicitly on t.

Hence,

vV _ _h
at

where h is a constant force. Let us consider the function ¢ (V). We have

ou = ¢"R?
and
.1 a..éz —._9__ 'a.a_V.. — "a.‘?l’.i‘i_*_ 'i a-_a_V.)
"%( Y ”‘7:') 9 (qp i"’%‘) = PN g, g, T ® "’9:( Hag;,
whence, s ’
Lipl = Z—a—qi <a,-,- 7}’.) = ¢" Aay;pip; + LIV}
But

6;pp; =2(U + h)
When h £ 0, we have
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2 h L4
L) = ou ——(Uhf ) 4 @LIV)

Now we will assume that the leading motion is stable for fixed a,,
+esy @5, We have

e el K P T RPN ST i » TR 2 =10 sl Lollawine avatan
ine equations in tie variations Ol rolncare: yieit uie€ 10iilwing sysivan
dE; 9*H N OH _
dt =26p8q &+ Zapap s 26 - Pskj - 2"’“""“

a5 IV " O v
8q aqE'quaqan 2; (ISaq)

For the reduced system (this is true for any regular system) the
characteristic number of the expression

exp 8233,(0”3 )dt —cxng[V]dt

must be zero if the motion is stable. For the primitive case this con-
dition of stability is

LV)=

(In the general case this condition is sufficient in order that one
condition of stability be satisfied). In accord with the last relation
we have

2(U + )
ppu=Llgl (p= (—h—r-'l)

This equation is of the hyperbolic type because 2T = Eaup‘pj is a
positive definite quadratic form.

In the general case

fLIV1dt is a bounded function

6. Development of the optical-mechanical analogue. In order
to show that the obtained result represents a development of the optical-
mechanical analogue, it is sufficient to note that the equations in the
variations of Poincaré were used only for the sake of convenience in the
application of the general results of the theory of stability of motion
of Liapunov. One can start out directly with the fundamental propositions
of the optical-mechanical analogue of Hamilton.

Indeed, the function of action of Hamilton V satisfies the fundamental
relation of the contact transformations between the values of the co-

ordinate q and the momentum p for the instant t and for the initial in-
stant t,
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Q

8V = pdq — p°8q

The outer product or bilinear covariant of this expression

[8p, 3q1 = [8p°, 3¢°] (5.1)
represents nothing more than the Poincaré invariant for the equations in
the variations. Therefore, if one now demands stability of the deviations
8q, 8p for small initial deviations of the coordinate 8g° and of the
momentum 8p°,. then the bilinear covariant of the fundamental relation of
the optical-mechanical analogue of Hamilton (5.1) yields the represent-
ation of the transformations arising hereby of 8p, &g in the fundamental
group of the post-Huygens theory of light, i.e. the complete Lorentz
group.

An essential addition to the results of Hamilton was made by Jacobi
in his well known theorem on the properties of the complete integral
V(t, q, a) of the partial differential equation

% —1-H(t,q,%§-):=0

Jacobi established the relations
=5 —B=%
where a, B are constants. From these equations we obtain
8V = pdq — pia
or, forming the bilinear covariant, we have
(3p, 8q] = [3B, da]

The general invariant of dynamics makes it possible to show how the
derived results depend on small deviations of the parameters a and 8.

If one has a mechanical system with k degrees of freedom, and if
furthermore, all variables can be completely separated, then the pre-
sented development of the optical-mechanical analogue can be extended to
such a system directly in the form of a k-multiple representation. The
general case is of interest for its own sake in analytical mechanics.

6. Problems. Several interesting problems arise in connection with
the solution of Klein’s problem, some of which were solved quite long ago.

It seems that Lagrange was the first to consider properties of
mechanical systems admitting an invariance of relations under possible
transformations of the elementary group of translation and rotation of a
solid body. He did this in his work "Analytical Mechanics". A.P. Kotel’-
nikov considered the general transformation of this group. For holonomic
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relations of the group of possible displacements which are connected with
invariants, Poincaré gave a general treatment.

A second problem that has been considered deals with mechanical
systems that have certain transformations which leave invariant certain
relations and the work or force function or the total energy of the
system. Lagrange considered elementary transformations of the group of
motions of a rigid body which leave invariant certain relations among
given forces and the work done by these forces. I have treated the trans-
formations of the general group of all possible displacements which
leaves Lagrange’'s function invariant.

The group of real motions has also been studied. Lagrange established
the properties of mechanical systems whose real displacements are within
the group of possible displacements. Hamilton showed that the general
transformations of Lagrange’s coordinates of the canonical system g, and
of the conjugate momenta p, represent a group of contact transformations.
The general group of contact transformations has been well studied. In
this work the group of disturbed motions of a stable, leading motion of
a canonical system has been determined.

Other natural problems of dynamics, which are connected with the group
of possible displacement, with the group of real motion, with groups that
leave invariant fundamental mechanical functions, or problems related to
representations of these groups, still await solution.

Transglated by H,P.T.



