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fuoscow) 

One of the most important discoveries of analytical mechanics is the 
optical-mechanical analogue revealed (discovered) by Hamilton. 

Hamilton established the likeness of the canonical forms 

dq aH dp aH 
Jr=&-’ 

-- 
dr= aq 

of the basic equations of the dynamics of conservative systems and of 
the wave theory of light of Huygens. 

Discoveries of Mamilton, Jacobi, Poincar& and lielmholtz are closely 
connected with the optical-nmchanical analogue. All this is well knom. 

Optical theory did not cease to develop after the wave theory of 
Huygens. lhere followed the theories of Fresnel, Cauchy and Maxwell. 

Guchy, who set himself as a goal the further development of the 
optical-mechanical analogue of Hamilton, found this analogy not in the 
area of the dynamics of systems of material points, but in the field of 
the theory of oscillations of an elastic medium. With his discovery, 
Cauchy diverted fran analytical dynamics problems concerning the further 
development of the analogue with the post-Huygens theory of light. 

Felix Klein was, probably, the first who directed his attention to 
this matter. It is for this reason that we shall refer to the problem of 
the further development of the optical-mechanical analogue within the 
frrraerork of analytical dynamics, as the problem of Klein. 

In order to solve the problem of Klein, we note that in all post- 
Huygens theories, light is considered as some oscillating process. ‘lhe 
development of the optical-mechanical lrnalogue should, therefore, be 
sought in the area of oscillatory motions. 

l The work was found in notes by N.G. Chetaev and was dated 1941. 
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Lagrange established that near the position of equilibriran of some 
mechanical systems there arise oscillations uuder small disturbauces of 
the initial values of the coordinates q and of the momeuta p when the 
Position of equilibria is stable. Inversely, if the Position of equi- 
librim is stable, then in its neighborhood, any disturbed motion will 
have an oscillatory nature, and if they are of a destructive nature, 
then this is due to secular terms. For the case of Periodic motion, the 
theorem of Lsgrmge was generalized by Poincar6. aud Liapunor independ- 
ently of each other. 'lhey showed that if a certain Periodic motion of a 
conservative system is stable, then the corresponding equations iu 
PoiucarC's variations xi11 have solutions uith zero characteristic 
nmbers of Liaptmor. I have been able to generalize the theorem of Poin- 
car& and Liapunor to the general case of stable motions of conservative 
systems. 

lhus, if the solution of Klein's problem exists, then one should seek 
it mnoug the properties of stable motions of conservative systems. 

1. On a property of stable n otioas of conservative systems. 
For the sake of siqlicity let us ass= that ue have a holonomic system 
uith one degree of freed- which is acted qmn by a system of forces 
uhich a&At a force function; let q be Lagrtmge’scoordinate, p it8 
mamentua, and let lY be hilton's function. lhe equations of motion have 
the form 

dq aH dP i3H 
-&=apv x=---q 

lhe equation8 in variations of RAncar for sopBe leading or Mdis- 
turbedmotiouwillbe 

where [, g denote the variations of the coordinate q and of the momentum 
p, respectively. 

let us asstmm2 that the leadingrsoticnia reducible andstable in the 
sense of Liapmrov. For small initial disturbances (,,, qe, the equatiw 
of Poincar6 xi11 alxay8 be equations of the first approximatim. Ihe 
solutions of the equatiw in the variations of PoincarC uill have the 
form 

E=aEo + Brlo s=&4-t-~%J V.9 

For tao arbitrary solutiw t, u and c., 9' of the equations in the 
variations, pOinca& established the now xell b invariant 

Eq'-* 
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In other words, for every instant t, the tranafonaatious (1.1) repre- 
seat, a uni-modular group of linear transformations. If the leading 
motiou is stable aud reducible, thea, in accord with the basic results 
of Liapuuov’a theory of stability, the equations of variation of Poin- 
car& possess au invariant quadratic form of a definite sign, and the in- 
variant quadratic form will be of the typa 

ti+ri;;r 

What are the interrelations which the invariance of this form isposes 
on the coefficients of the uui-modular linear transformation (l.l)? 

We have 

Since this relation muat hold for arbitrary initial values tO, ua, 
the following equations have to be valid 

cG++ 1, cq+$= 0 

@+G=o, #$+a& 1 

From the first colum of the obtained relations we obtain 

17 ;= I I 08 = 6, + 

uhile from the second colmn we have 

lhua, the amtrix of the uni-modular transformation (1.1) has the 
following property 

(; g=(_; -;, (m 

in case the leading motion is stable also in the reduced variables 6, q. 

2. Represeatatioa of the obtained grarp of transformations. 
'Ihe revelation of au analogue between pheuanena consists of showing the 
coincideuce of the group of trausfonsationa of one pheuomenon with the 
group of transfomaticma of the other ph eurmauon. In case both groupa 
turu out to be the ame, then there exists an aualogue between the two 



30 N.C. Chctacv 

phenomena. 

l’he essence of the analogue discovered by Hamilton lies in the fact 
that the group of transformations of the conservative systems, and the 
group of the propagaticm of light by Huygens’ wave theory are groups of 
contact or canonical transformations. That the group of transfomations 
of the dynamics of conservative systems is the group of tangent trans- 
formations was established by Milton in the basic property of the 
function of action Y 

iv = z p8q - yJ p%qO 

‘lhis asserts that the values q, p, and q”, p” are connected by the 
formulas of the contact transformations 

av 
P 

av 
= a; e -PO= &G 

Hence, in order to find phenomena which are analogous to the disturbed 
motion of canonical systems in the neighborhood of a stable leading 
motion, it is necessary to consider representations of the obtained group 
of the uni-modular,linear transformations (1.1) with the property (1.2). 

It has been shown quite clearly that the group of uni-modular linear 
transformations (1.1) has a representation in the proper Lorentz group. 
It is necessary to explain the nature of the property (1.2). 

Let us consider the space f, s uhose metric properties are determined 
by F’oincarQ? s invariant 

% obtain the so-called spinor space with 
mental tensor 

the skewsymetric funda- 

if ue interpret the variations 6, q as contravariant components of the 
vector 61, t*. lh e covariant components are determined by the usual 
fonmllas 

Eo = 2 go&@ 

whence, 
E1 = Es, Es = - E’ 

If the transformations of the contravariant cosqonents happen to be 
the transformations (1.11, then we will have the following fomulas for 
the covariant components el, tf2: 

& = Gu - T&m EB = - BEol+ 4or 

From this it follw that the conjugate components fl, f2 will be 
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transformed according to the formulas 

41 = %,1 - r&2, F* = -&1+ 30, 

If the leading motion is stable, that is if the relation (1.2) holds, 
then one obtains directly the formulas for the transformation 

L = a& + 8%~~ Ez = riio, + &, 

In other words, the components El, fz are transformed, in accord with 
the formulas (1.1) of the transformation of the contravariant components 

of the vector of the spinor space. 

‘lhus, if the property (1.21 holds for an arbitrary vector <f>, one 

may look upon the components fl, f 

f 

as upon contravariant components q’, 

v2 of some corresponding vector (q . We shall express this circwtance 

analytically by following relations: 

St, = q”, 
- 

ST/” = Em (a = 1, 2) (2.~1 

Van der Waerden has made a thorough study of the representations of 

the transformation S in his work .‘lhe method of group theory in quantum 

mechanics.. He established that the transformation S augments with a re- 

flection the representation of the G-modular group of the linear trans- 

formations (1.1) in the proper group of lorentz. 

For the sake of completeness, I shall give here the method of such a 
representation. let us consider the spin-tensor of the second order 
IIc *II whose coqonent c - 
te%r has the followiginvariant 

is transformed as the product Q&. such a 

c= 5i 5; I I %i %i 
= C,iC,;- C&;cBi = f (CliCli+ C.&Czi + C,;Cli + CgC2i) = f z C&i Cl'!. 

let us consider the tensor llc,;11 for which the invariant quadratic 
form 

takes on only real values. Here clip c2i must be real, and cli and c2i 

are complex conjugates. 

variables x0, x1, x2, x3 
If we now introduce in place of cP; new real 

in accordance with the relations 

then the invariant 
variables: 

C=l 

Cli = 5s + zo, c,; = x1 + 1x2 

C2i = X1 - iI*, c.&.je -Xg +so 
P.2) 

C will take the following form in terms of the new 

2s + 10 21 + ia I 
= x0 

a 
- 

21- izz -x9 + zO 
x1 

2 
- 52 

a 
- x2 

2 
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‘Ihis shows that under the tramformation (1.1) the real variables xc 
will be transfomed in such a ray as to leave invariant the expression 
$2 - q - x22 - x12, . i.e., 

Lmentz trausformation. 
the variables xk will uudergo a real, proper 

let us now apply the transformation S, 
the tensor 11cti11 

or, more explicitly 
s HCJ = 11 c’ri 

given by formulas (2.11, to 

II 

SCli = dli = c& ’ , ~l+~~dl= --Cl, 

$,i = c’ai = - c,g’ $+c’d= cfi’ 

This, however, by formula (2.2) yields directly 

20 = x0, 21’ = -x1, x*’ = - 22, x3’ = -5 

Hence, the complete group of lorentt transformations is a represent- 
ation of the group of A.-modular linear transformation (1.1) with the 
property (1.2). 

The complete Lorentz group is basic for the theory of light of Cauchy 
and Maxwell which appeared after Huygens’ theory. One can loolc upon the 
obtained result as a solution of Klein’s problem. 

3. Another proof. It is reasonable to require another proof for 
the basic result. 

In the first proof the property (1.2) of the reduced variables was 
used for stable disturbed motions. let {‘, t2 represent general vari- 
ations of the coordinate and the impulse. According to the PoincarC in- 
varimt the components 6” are transformed as the group of uni-modular 
linear transformations 

5l = aE0’ + /%o E’ = rEol + G2 (a6 -fir =I) (3.1) 

Let the leading motion be stable, and the corresponding differential 
equations in the variations of Poinca& be reducible. ‘ken, according 
to the results of Liapunov, there exists a definite (in the sense of 
Liapunov) real, invariant quadratic form hnm as Liapunov’s function. 
In the spinor space of the group of uni-su&lar linear transformations 
(3.1) this function of Liapunov will be a quadratic form of the Hermite 

type 

where 1 “r;l represents a bounded function of time. The criteria for the 
definiteness of a liennitian form are well kwnrn 
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is a transformation to the canonical reduced variables $a in tenas of 

tc,i + O) 

Indeed, suppose that 

(3.2) 

which the equations of variations of Poincar6 have constant coefficients. 
In accordance with the definition of reduced systems (Liapunov, obshchaia 
zadacha [General problem 1 page 43) the coefficients A a satisfy the 
following conditions: 

B 
they are continuous and bounded functions of time 

t; their first derivatives are functions of the same type, aud the 
quantity 

1 

II A; II 

is a bounded function of t. From this it follows that the now obvious 
Liapunov function of the cauonical, reduced variables +a has the form 

For the stable disturbed motions, determined by the canonical equa- 
tions in variations, the fuuction of Liapuuov is au invariant. (a pair of 
pure imaginary characteristic roots). Hence, 

are the canponents of a spin-tensor of the second order. lhe Hermitian 
nature of the quadratic form can be proved directly from the relation 

The expressions c * are bounded, and the c 
PV 

- are positive. 
W 

We have seen that the discriminant of the Xexmitian form C is au in- 
variant of the group of the uai-modular linear trausformations (3.1). 
lhe criterion for definiteness of (3.2) in the variables xI takes for 
fans 

zOs - Sl” - szS - qi* > 0 

Ihe rest follows easily. Let us consider, therefore, the invariant 

zoa - 21% - zc*8 - 53s = 1>0 

In the space Euclidean) x0 x1 x2 xS, this equation determines a two- 
sheeted hyperboloid. By geometrical considerations, like those that were 
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developed by Poincark. in his mark Qn the basic hypotheses of geometry~, 
one can represent a two-sheeted hyperboloid in a real three-dimensional 
space of lobachevskii. To a definite set of values of the variables X~ 
there corresponds a point of the upper x0 > 0 sheet of the two-sheeted 
hyperboloid, and, hence, also a point of the real part of the space of 
lobachevskii. This representation can also be realized by the methods of 
Cayley, Cartan and others. 

‘lhe totality of the transformations of the real lobachevskii space 
represents, as is known, the complete Lorentz group, i.e. the basic group 
of transformations of the mathematical theory of light of Cauchy and of 
the electraaaguetic theory of light of Maxwell. ‘Ihis proves that the 
group of the uni-modular linear transformations (3.1) for the case of a 
stable leading motion (if the equations in variation are reducible) has 
as its representation the complete Lorentz group. 

‘Ihe set of all linear transfomations of the variables %k in the real 
lobachevskii space consists of the motions of the space within itself 
and of reflections. In other words, the group of uni-modular linear trans- 
formations (3.1) which corresponds to the stable leading motion, has a 
representation in the proper lorentz group a-ted by a reflection. 
The group of proper Lorentz transformations with the transformation of 
reflection represeuts the caaplete Lorente group. lhe theorem has thus 
been proved. 

(Note. Ihe presented proof makes it possible to drop the hypothesis 
on the reducibility of the equations in variation of Poincar& if one re- 
quires to begin with the existeuce of a msign-definite= (in the sense of 
Liapuuov) iuvariaut. 

The stability of the leading motion will then follow directly from 
the existence of such an invariant on the basis of the general theorem 
of Liapunov on the stability of motion @bs’hchaio dacha, [General 
probler 1 p.6111. 

4. 'Bird F'roof. One can give still a third proof without the use 
of the results of spinor analysis and without drawing upon the geometry 
of L&a&m&ii. 

Let us consider the equations in the variations of Poincark. for the 
leading motion 

If the disturbed motion is stable and the equations in the vuriatims 



The problem of Klein 35 

are reducible in the sense of Liapunov, then the characteristic equation 
of the reduced system will have a pair of pure ims&ary roots. Hence, 
the *sign-definitem Liapuuov function V for the equations in the vari- 
ations of Poincark will be a real quadratic form whose total time deri- 
vative will be zero. 

Let Liapuuov's function be given by the Hermitian form 

v=hE;i+91~r)+q&+(P*Gi 

satisfying the criterion of sign-definiteness 

c = ;;; >o 
I I 

(cj+ f 0) and 

(4.1) 

l'he first total derivative with respect to time of Liapunov's func- 
tion is identically zero. lhis yields 

Gmparing the coefficients of [[, [c, s~ ) 113 we obtain the follow- 
ing system of linear differential equations 

Indeed, if the right hand sides of these equations were not zero, then 
it would be possible to select the initial values &,, 'lo so that dV/dt 
would not vanish at the initial moment (which can be chosen arbitrarily). 
This, however, is not possible by hypothesis. 

It is easily verified by direct computation that the expression 

is an integral. Indeed, according to the differential equations for the 
functions +o, +,, we have 
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'lhe rest of this proof continues as the preceding one. 

5. Foarth Proof. It is possible to find the solution in closed 
form for one of the primitive cases. 

Let 

2~' =x_&jpipj, ~=wA,..., Qk) 

where 7' and U are the kinetic energy and the force function for some 
mechanical system with h degrees of freedom for which the ql, . . . . qk 
art? the coordinates, while pl# . . . . pk an? the mmfmta. 

ht v(t, qln ***I qk’ 01, .*., ak) be the complete Jacobi integral 
of the equation 

rhtre H = T- U is the Hamiltonian; aij does not depend evlicitly on t. 

Hence, 

W -=- h 
at 

where h is a constant force. Let us consider the function qi( V). We have 

and 

But 

xGjp*pj=2(u++h) 

Uhenh+O,*haVe 
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Now we will assume 
. ..) ah. We have 

+I = qat 
2(U +w 

/‘a 1-?‘L VI 

that the leading motion is stable for fixed al, 

‘Ibe equations in the variations of PoincarB- yield the following system 

For the reduced system (this is true for any regular system) the 
characteristic number of the expression 

must be zero if the motion is stable. For the primitive case this con- 
dition of stability is 

L[V] = 0 

(In the general case this condition is sufficient in order that one 
condition of stability be satisfied). In accord with the last relation 
we have 

This equation is of the hyperbolic type because 27 = Xoijpipj is a 
positive definite quadratic form. 

In the general case 

$L[Vldt is a bounded function 

6. Development of the optical-mechanical analogme. In order 
to show that the obtained result represents a development of the optical- 
mechanical analogue, it is sufficient to note that the equations in the 
variations of Poinca& were used only for the sake of convenience in the 
application of the general results of the theory of stability of motion 
of Liapunov. One can start out directly with the fundamental propositions 
of the optical-mechanical analogue of Hamilton. 

Indeed, the function of action of Hamilton V satisfies the fundmaental 
relation of the contact transformations between the values of the co- 
ordinate q and the momsntum p for the instant t and for the initial in- 
stant to 
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8V = p8q - pOsqO 

lhe outer product or bilinear covariant of this expression 

lap, 891 = l6P”, v1 (5.4) 

represents nothing more than the Poinca& invariant for the equations in 
the variations. Therefore, if one now demands stability of the deviations 
Sq, 6p for small initial deviations of the coordinate 69’ and of the 
momentum spa,. then the bilinear covariant of the fundmaantal relation of 
the optical-mechanical analogue of Hamilton (5.1) yields the represent- 
ation of the transformations arising hereby of 6p, 6q in the fundamental 
group of the post-Huygens theory of light, i.e. the complete Lorentz 

t!vUP* 

An essential addition to the results of Hamilton was made by Jacobi 
in his well lcnown theorem on the properties of the cuaplete integral 
I’(t, q, a) of the partial differential equation 

Jacobi established the relations 

W W 
p=,,* -B=z 

where a, /!I are constants. From these equations we obtain 

SV = p8q - BSa 

or, forming the bilinear covariant, we have 

‘lhe general invariant of dynamics makes it possible to show how the 
derived results depend on small deviations of the parameters a and /3. 

If one has a mechanical system with k degrees of freedan, and if 
furthenaore, all variables can be caspletely separated, then the pre- 
sented development of the optical-mechanical analogue can be extended to 
such a system directly in the form of a k-multiple representation. ‘l’he 
general case is of interest for its own sake in analytical mechanics. 

6. Problems. Several interesting probleam arise in connection with 
the solution of Klein’s problem, some of which were solved suite loag agoa 

It seems that Lagrange was the first to consider properties of 
mechanical systesm adalitting an invariance of relations under possible 
transformations of the elementary group of translation and rotation of a 
solid body. He did this in his work mAnalytica1 bWmnicsm. A.P. Kotel'- 
nikov considered the general transfomatian of this group. For holomxaic 
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relations of the group of possible displacements which are connected with 
invariants, Poincark gave a general treatment. 

A second problem that has been considered deals with mechanical 
systems that have certain transformations which leave invariant certain 
relations and the work or force function or the total energy of the 
system. Lagrange considered elementary transformations of the group of 
motions of a rigid body which leave invariant certain relations among 
given forces and the work done by these forces. I have treated the trans- 
formations of the general group of all possible displacements which 
leaves Lagrange’s function invariant. 

‘lbe group of real motions has also been studied. Lagrange established 
the properties of mechanical systems whose real displacements are within 
the group of possible displacements. Hamilton showed that the general 
transformations of Lagrange’s coordinates of the canonical system q, and 
of the conjugate momenta p, represent a group of contact transformations. 
‘lhe general group of contact transformations has been well studied. In 
this work the group of disturbed motions of a stable, leading motion of 
a canonical system has been determined. 

Other natural problems of dynamics, which are connected with the group 
of possible displacement, with the group of real motion, with groups that 
leave invariant fundamental mechanical functions, or problems related to 
representations of these groups, still await solution. 

Translated by H.P.T. 


